ДНК – молекула жизни. Открытие структуры и функции, значение открытия

Из истории открытия структуры ДНК

В 1910 г. стало ясно, что гены располагаются на хромосомах. Но не ясно было, из какого материала состоят гены – из белка или из нуклеиновой кислоты.

В 1928 г. Ф. Гриффит начал изучать роль нуклеиновой кислоты в жизни клетки в опытах на пневмококках.
Имеется два типа пневмококков. У одного пара бактериальных клеток окружена капсулой. Второй тип клеток – без капсулы. Капсула защищает микробы от фагоцитоза. Если ввести такие мышам, то они погибают. Пневмококк без капсулы не заражает мышей и не вызывает пневмонию.
Опыт. Мышей заразил смесью клеток живых пневмококков без капсул и мертвых пневмококков с капсулами.
Ожидалось, что мыши останутся здоровыми. Но они погибли от пневмонии. Живые бактерии, выделенные из мышей, имели капсулы. Это явление трансформации клетки.
Опыт. Микробиологи предположили, что какое-то вещество мертвых пневмококков способно заставить живые клетки образовывать капсулы. Они показали это в опытах.
Пневмококки с капсулами убили, растерли их и приготовили раствор из разрушенных этих клеток, – это экстракт. В культуральную среду внесли экстракт из мертвых клеток с капсулами, затем в эту среду внесли живые пневмо- кокки без капсул.
Результат: некоторые из клеток без капсул трансформировались в клетки с капсулами; их потомки также обладали капсулами и при введении их мышам вызывали пневмонию.

Оказалось, что клетки без капсул претерпели изменение — они стали обладать капсулами и вызывали пневмонию. Важно, что и их потомки также образовывали капсулы и вызывали пневмонию.
Вывод: 1) признаки пневмококков изменились, 2) это вызвано скорее тем, что какой-то компонент экстракта или он стал частью пневмококка.
Опыты Ф. Гриффита продолжили американские ученые – микробиолог
О.Т. Эвери (1877-1955) и его сотрудники.
Они задались вопросом: какое вещество вызывает трансформацию одного штамма пневмококка в другой? Для этого они повторили опыты Ф. Гриффита, используя вместо микробов экстракт из них.
Экстракт в опытах с пневмококками сохранял свою трансформирующую активность при разрушении в нем белков и РНК, но терял ее при разрушении ДНК.

Вывод: трансформирующим веществом является ДНК. Отсюда гены построены из ДНК.
Трансформация состоит в передаче генов от умерших пневмококков в живые и внедрении их в хромосому-хозяина, т.е. в бескапсульные пневмококки.
Эти данные об открытии ученые опубликовали в 1944 г. Так впервые было доказано, что признак от одной клетки передается другой веществом ДНК. Но как?
Роль ДНК в клетке была дополнена из жизни вирусов, содержащих ДНК. Они заражают клетки бактерий для того, чтобы осуществить в них цикл размножения.
При этом обнаружилась способность ДНК вируса синтезировать свои копии и белки.
Из всего следует, что ДНК контролирует жизнь содержащих ее клеток и способна синтезировать копии своих молекул. Этот процесс называется «самоудвоением» или размножением. ДНК – единственная в природе молекула, способная копироваться.

Вклад акад. Н.К. Кольцова

В 1927 г. наш ученый – акад. Н.К. Кольцов (1872-1940) писал, что «в одной хромосоме укладывается одна невероятно длинная молекула, а вдоль неe располагаются отдельные группировки атомов – гены».
Он также впервые сказал, что «при делении клеток такие молекулы не создаются заново из отдельных кусков, а сначала достраивают на себе точные копии, а затем исходная молекула и копия разойдутся вместе с дочерними хромосомами в образующиеся заново клетки». Это матричный принцип репликации генов и затем хромосом перед делением клетки на две.
Как происходит удвоение ДНК перед делением клетки было тайной для биологов в течение многих десятилетий. Ученые догадывались, что для понимания этого необходимо знать: 1) строение ДНК и 2) способы расположения нуклеотидов в молекуле.
К 1950 г. было известно, что ДНК молекула, которая состоит из тысяч соединенных между собой в линию молекул четырех разных типов – нуклеотидов.
Э. Чаргафф (1950) показал, что в любой ДНК количество аденина равно количеству тимина (А=Т), а количество гуанина – количеству цитозина (Г=Ц). Это указывало на то, что в молекуле ДНК они находятся парами: А-Т; Г-Ц.
Р. Фраклин (1920-1958) в лаборатории М. Уилкинса методом рентгеновской кристаллографии получила «знаменитое ныне изображение картины структуры ДНК».
Однако из этих знаний не ясно было: как работает эта молекула или как она выглядит? Никто не знал, как выстраиваются химические единицы – А, Т, Г, Ц, чтобы нести в себе информацию о плане строения и воспроизводства живого.

Модель молекулы ДНК
Д. Уотсон и Ф. Крик занялись созданием модели молекулы ДНК, как Л. Полинг – для изучения пространственной структуры белка. Она помогла бы понять детали структуры и возможные функции ДНК.

Проведя расчeты, они в течение 18 месяцев были заняты созданием модели и создали модель ДНК. Но они не были уверены в правильности этой модели.

Руководитель Р. Франклин – М. Уилкинс разрешил Д. Уотсону ознакомиться с рентгеновским изображением молекулы ДНК, не сказав об этом ничего Р. Франклин. Когда Д. Уотсон увидел полученное Р. Франклин изображение, он понял: «они с Ф. Криком не ошиблись». На этом снимке они четко видели при- знаки спирали и пошли сразу в лабораторию, чтобы проверить «все на объемной модели».
Из-за отсутствия пластин Д. Уотсон вырезал из картона четыре типа макетов нуклеотидов: аденина (А), Тимина (Т), гуанина (Г) и цитозина (Ц) и стал раскладывать их на столе.
Он тут же обнаружил, что аденин соединяется с тимином, а гуанин с цитозином по принципу «ключ-замок», образуя пары. Именно таким образом удерживаются между собой две цепи молекулы ДНК.
Последовательность этих пар в молекуле может бесконечно варьировать. Это и служит шифром или кодом, при помощи которого зашифрована информация, определяющая тип белка, синтезируемого данной клеткой (Рис. 1).

Молекула ДНК и двух цепей

Рис.

1.

Молекула ДНК и двух цепей

. Основания соединены водородными связями.
Молекула ДНК имеет две функции: 1) передавать информацию потомству, т.е. дочерним клеткам и 2) реализовывать информацию внутри клетки.
Из структуры двойной спирали сразу видно прямое следствие – репликацию, т.е. размножение ДНК. Способ: расхождение двух комплементарных цепей и построение по каждой из них новой – дополняющей цепи. Так из одной молекулы ДНК образуется две, что требуется для деления клетки на две. Ошибки при репликации, т.е. мутации – причина превращения нормальной клетки в дефектную (Рис. 2 и 3).

Расхождение цепей ДНК

Рис. 2.

Расхождение цепей ДНК

.

Достраивание по каждой из цепей новой, – дополняющей цепи

Pиc. 3.

Достраивание по каждой из цепей новой, – дополняющей цепи

. Итак, был доказан матричный принцип репликации ДНК перед делением
клетки, предсказанный великим учeным, акад. Н.К. Кольцовым. Две части молекулы отделяются друг от друга, по каждой из них синтезируется новая поло- вина молекулы. Порядок же оснований – в роли матрицы или образца для дост- раивания молекул.
ДНК – хранилище генетической информации

Информация о синтезе каждого типа белка заложена в ДНК в виде некой линейной последовательности оснований.
В 1961 г. Ф. Крик доказал, что каждая группа из трех оснований образует кодон. Один кодон кодирует одну аминокислоту из 20 главных аминокислот.
Для переноса информации о структуре белка из ядра клетки имеется иРНК. Она – копия с фрагмента кодирующей матричной цепи ДНК. В ней вместо тимина содержится урацил.
По иРНК в рибосоме с помощью транспортной РНК будет синтезирован белок – конечное звено реализации генетической информации. Так как ДНК служит хранилищем генетической информации, ее называют молекулой жизни.
До начала работы Д. Уотсона и Ф. Крика над структурой ДНК, уже многое было известно.

Р. Франклин в 1951 г. впервые получила первую уникальную рентгенограмму молекулы ДНК, где видно, что эта молекула имеет форму двойной спирали, очень похожую на винтовую лестницу. Ее снимки сыграли решающую роль в открытии Д. Уотсона и Ф. Крика. В знак этого, Р. Франклин называют «пионером» молекулярной биологии.
За открытие структуры ДНК и ее функций Д. Уотсон, Ф. Крик и М. Уилкинс в 1962 г. удостоены Нобелевской премии. Р. Франклин не дожила. Она скончалась от рака в 1958 г.

Революция в мире науки

Открытие пространственной структуры ДНК – стало основанием для ряда новых открытий.
В 60-х гг. ХХ в. механизм репликации ДНК подтвердился, обнаружен фермент – ДНК-полимераза, катализирующий этот процесс.
Открыт генетический код, т.е. шифр, по которому в клетке синтезируются белки.
В 70-х гг. XX в. еще два метода были созданы: секвенирование и получение рекомбинантной ДНК.
Секвенирование дает возможность «читать» последовательность нуклеотидов в ДНК. С помощью этого метода расшифровывался «геном человека».
Получение рекомбинантной ДНК или метод молекулярного клонирования. Суть этого метода – в молекулу ДНК встраивают фрагмент, содержащий определенный ген.
Например, вводят его в бактерию, и она синтезирует его продукт – белок, который необходим человеку.
В 80-х гг. XX в. разработана полимеразная цепная реакция (ПЦР). Эта технология необходима для быстрого «размножения» нужного фрагмента ДНК.
С помощью ПЦР можно осуществлять раннюю диагностику бактериальных и вирусных инфекций, а также первые раковые клетки в организме пациента по их генам-маркерам.

Например, в плазме крови пациента можно обнаружить фрагменты генов- маркеров раковой клетки. Если фрагмент в малом количестве или единственный, с помощью ПЦР его размножают и после этого легко идентифицируют.
Открытие структуры ДНК дало возможность учeным расшифровать геном человека и многих других организмов. Это открытие позволило перейти к генной терапии любой болезни, в том числе рака.
Раковая клетка «плохо распознается иммунной системой пациента, т.к. она возникает из нормальной клетки организма-хозяина».
Поэтому для уничтожения раковых клеток с помощью генной терапии, надо прежде сделать раковые клетки «чужими» для иммунной системы.
Есть много способов, как это сделать. Можно из материала биопсии рака выделить раковые клетки, ввести в них «чужой» ген, а затем эти раковые клетки ввести обратно в организм пациента. В таком случае иммунная система по белку этого гена будет распознавать раковые клетки как «чужие» и уничтожать их.

В опытах на животных такой метод воздействия на ДНК раковых клеток дал обнадеживающие положительные результаты. Но для лечения же пациентов от рака, подобный метод находится пока на этапе клинических испытаний
(Е.Д. Свердлов, 2003).

К эре «живых технологий»

И совсем необычно – начало новой эры «живых технологий». Ученые ряда стран заявляют, что они почти готовы к созданию «искусственной жизни», т.е. абиогенезу.
Пока нет единого определения живого, для него характерны три признака; 1) наличие контейнера, т.е. мембраны, вмещающего содержимое клетки;
2) метаболизм – способность преобразовывать базовые питательные вещества в рабочие механизмы клетки; 3) наличие генов – химических конструкций, необходимых для построения клетки, которые могут передаваться потомству и изменяться вместе с изменениями окружающей среды.

Каждый из этих трех элементов уже воспроизведен в лабораториях, ученые готовы приступить к попыткам соединить все это «в одну рабочую единицу», т.е. клетку.
В случае успеха, это будет «мир сверхмалых живых машин: специальные клетки будут лечить организм человека и бороться с загрязняющими окружающую среду веществами».
Ближайшей задачей науки ученые считают создание «искусственной клетки», способной к самовоспроизводству и вырабатывающей уникальные химические вещества, в том числе лекарства, которые пока не удается синтезировать.

«Искусственное живое» будет находиться под полным контролем человека, например, «подпитывая» его элементами, не встречающимися в природе в чистом виде.

Синтез вирусов и начало синтеза клетки

1. Проф. Э. Уиммер (E. Wimmer) и его группа из Нью-Йорка в 2002 г. впервые со времeн зарождения «живого» на Земле, создали вирус полиомиелита из неживой материи.
Ученые спорят: вирусы – это живые существа или неживые объекты?

У.М. Стэнли – лауреат Нобелевской премии – считает, что «в клетке вирус ведет себя как живое существо, а вне клетки он мертв, как камень».

Г. Надсон – наш микробиолог, говорит так: «Вирус – это то ли вещество, обладающее свойствами существа, то ли существо со свойствами вещества».
Акад. В.А. Энгельгардт – наш ученый, писал: «Многие вирусы состоят всего лишь из белка и нуклеиновой кислоты. Они могут быть отнесены к химическим соединениям – нуклеопротеидам».
Геном вируса полиомиелита полностью расшифрован. На этом основании учeные собрали точную последовательность нуклеотидов, соответствующую естественному образцу.

Этот генетический материал поместили в раствор, подобный цитоплазме. В нем по информации, заложенной в ДНК, были синтезированы необходимые белки.
Они применили рецептуры, опубликованные в Интернете, и генетические последовательности, полученные по почтовому заказу.
Проф. Э. Уиммер сообщает, что как только в пробирку были помещены все генетические составляющие, вирус тут же «самособрался». Иными словами,
«жизнь, или по крайней мере еe подобие, завелась с пол-оборота».

Созданный вирус выглядел так же, как его природный образец. Для доказательства активности вируса ученые заразили им мышей. Животные погибли при классических симптомах полиомиелита.
На сборку генома вируса полиомиелита проф. Э. Уиммеру потребовалось три года.
В той же лаборатории К. Вентер (J. Craig Venter) синтез вируса произвел за 14 дней.
2. Синтез искусственного вируса phi-Х174. Это бактериофаг, существует в природе, безопасный для человека и животных.
К. Вентер и его группа взяли несколько участков ДНК и соединили их, создав полный геном вируса, содержащий одиннадцать генов. Эта смесь была помещена в пробирку, где самостоятельно собралась в генетическую цепочку, идентичную геному phi-Х174. После этого собранный геном имплантировали в живую клетку, которая начала производить копии вируса.
3. Американские учeные создадут неизвестную в природе форму живого. Учeные из лаборатории Роквилля объявили о намерении создать при помощи генной инженерии новую форму жизни – 21.11.2002.

Цель проекта – исследования фундаментальных механизмов зарождения и развития органической жизни. Основные участники – генетик К. Вентер и Нобелевский лауреат Х. Смит.

Целью эксперимента является создание одной клетки, являющейся базовой для формирования организма с минимальным набором генов для поддержания жизни.
Если опыт удастся, то выращенная клетка будет расти и делиться, создавая, таким образом, целую клеточную структуру, не существующую в при- роде. Это будет «минималистский» организм.
В конце 1990-х гг.XX в. К. Вентер – в то время глава Института геномных исследований в Роквилле (США), – опубликовал перечень генов, необходимых для существования одноклеточного организма, – микоплазмы. По его подсчетам этот обитатель половых путей человека может обходиться 300 генами из своих 517, которые в этом микробе образуют одну хромосому.
В основе проекта – на 3 года, лежит та же бактерия. Из ее клетки ученые намерены извлечь весь генетический материал, затем скомпонаватъ из его «кусочков» искусственную цепочку генов, т.е. хромосому. В еe состав войдут только те гены бактерии, которые «безусловно необходимы» для поддержания жизни нового организма. На завершающем этапе собранная цепочка генов будет инкорпорирована в лишенную генетического материала клетку.
Затем «должно случиться самое интересное, то, ради чего задуман эксперимент» – оживление бактерии. Дальше пойдут наблюдения за таким полуприродным организмом: как он живет и размножается.
«Нас интересует: можно ли придти к молекулярному определению жизни, и наша главная цель – фундаментальное понимание составляющих самой элементарной живой клетки».
Во избежание создания болезнетворного агента К. Вентер и Х. Смит лишат новую «микоплазму» генов, ответственных за ее прикрепление к клеткам в организме человека, потом тех генов, которые позволяют ей выживать в неблагоприятных условиях. В результате получится «довольно хрупкое существо, абсолютно зависимое от своих создателей».
В задачу исследований также входит научиться искусственно создавать различные гены. «Это – воистину базовая наука, – говорит К. Вентер. – Даже

при том, что мы обнаружили все гены в человеческом геноме, мы до сих пор не смогли постичь тайну самой простой клетки. Именно это мы и хотим сделать сейчас».
К. Вентер и Х. Смит и их группы в запасе имеют и другой вариант создания живой клетки: искусственно в лаборатории синтезировать эти базовые гены, собрать их в цепочку, а затем ввести их в такую же бактерию, из которой ее генетический материал весь будет предварительно удалeн.
Что вкладывает К. Вентер в свою задачу – дать «молекулярное определение жизни»?
Любая клетка построена из молекул, как и организм в целом. Их структура и состав, а также взаимодействие заложены в генах. В процессе эволюции каждая молекула скроена в соответствия с функцией в клетке. Клетка – это не хаотическое скопление молекул, а «их упорядоченность», т.е. организация, так как ее строят гены через продукты – белки. Разрушь ее, то хотя и останутся в виде смеси эти молекулы клетки,– это уже будет мертвое, так как разрушена молекулярная организация клетки. А она создана в процессе эволюции «живого».

Отсюда: К. Вентер стремится минимумом генов получить такую организацию неживых молекул, которая превратится в «живое». Это и будет абиогенезом.